Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mode spacing anomaly in InGaN blue lasers

Identifieur interne : 014311 ( Main/Repository ); précédent : 014310; suivant : 014312

Mode spacing anomaly in InGaN blue lasers

Auteurs : RBID : Pascal:99-0099025

Descripteurs français

English descriptors

Abstract

An important experimental observation in InGaN laser diodes (LDs), which is not yet fully understood, is that the measured mode spacing of the lasing spectra could be one order of magnitude larger than that calculated from the known cavity length. The aim of this letter is to shed light on the nature of the mode spacing anomaly in InGaN LDs. We have derived a formula which accurately determines the mode spacing in InGaN LDs. Our analysis has shown that the discrepancy between the expected and observed mode spacing is due to the effect of carrier-induced reduction of the refractive index under lasing conditions and this discrepancy decreases and naturally disappears as the threshold carrier density required for lasing decreases. Since the carrier-induced reduction of the refractive index is expected only from an electron-hole plasma state, our results naturally imply that electron-hole plasma recombination provides the optical gain in InGaN LDs, like in all other conventional III-V semiconductor lasers. The implications of our results on the design of nitride optoelectronic devices are also discussed. © 1999 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:99-0099025

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mode spacing anomaly in InGaN blue lasers</title>
<author>
<name sortKey="Jiang, H X" uniqKey="Jiang H">H. X. Jiang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Kansas</region>
</placeName>
<wicri:cityArea>Department of Physics, Kansas State University, Manhattan</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lin, J Y" uniqKey="Lin J">J. Y. Lin</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Kansas</region>
</placeName>
<wicri:cityArea>Department of Physics, Kansas State University, Manhattan</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">99-0099025</idno>
<date when="1999-02-22">1999-02-22</date>
<idno type="stanalyst">PASCAL 99-0099025 AIP</idno>
<idno type="RBID">Pascal:99-0099025</idno>
<idno type="wicri:Area/Main/Corpus">015959</idno>
<idno type="wicri:Area/Main/Repository">014311</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier density</term>
<term>Electron-hole droplets</term>
<term>Electron-hole recombination</term>
<term>Gain</term>
<term>Gallium compounds</term>
<term>Gallium nitrides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Indium nitrides</term>
<term>Laser modes</term>
<term>Recombination</term>
<term>Refractive index</term>
<term>Semiconductor lasers</term>
<term>Semiconductor plasma</term>
<term>Solid-state plasma</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>4255P</term>
<term>7866F</term>
<term>7350G</term>
<term>7350M</term>
<term>4260B</term>
<term>8105E</term>
<term>Etude théorique</term>
<term>Laser semiconducteur</term>
<term>Indium nitrure</term>
<term>Gallium nitrure</term>
<term>Indice réfraction</term>
<term>Densité porteur charge</term>
<term>Gouttelette électron trou</term>
<term>Recombinaison</term>
<term>Gain</term>
<term>Plasma solide</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Mode laser</term>
<term>Recombinaison électron trou</term>
<term>Plasma semiconducteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An important experimental observation in InGaN laser diodes (LDs), which is not yet fully understood, is that the measured mode spacing of the lasing spectra could be one order of magnitude larger than that calculated from the known cavity length. The aim of this letter is to shed light on the nature of the mode spacing anomaly in InGaN LDs. We have derived a formula which accurately determines the mode spacing in InGaN LDs. Our analysis has shown that the discrepancy between the expected and observed mode spacing is due to the effect of carrier-induced reduction of the refractive index under lasing conditions and this discrepancy decreases and naturally disappears as the threshold carrier density required for lasing decreases. Since the carrier-induced reduction of the refractive index is expected only from an electron-hole plasma state, our results naturally imply that electron-hole plasma recombination provides the optical gain in InGaN LDs, like in all other conventional III-V semiconductor lasers. The implications of our results on the design of nitride optoelectronic devices are also discussed. © 1999 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>74</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mode spacing anomaly in InGaN blue lasers</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JIANG (H. X.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIN (J. Y.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1066-1068</s1>
</fA20>
<fA21>
<s1>1999-02-22</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 1999 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>99-0099025</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>An important experimental observation in InGaN laser diodes (LDs), which is not yet fully understood, is that the measured mode spacing of the lasing spectra could be one order of magnitude larger than that calculated from the known cavity length. The aim of this letter is to shed light on the nature of the mode spacing anomaly in InGaN LDs. We have derived a formula which accurately determines the mode spacing in InGaN LDs. Our analysis has shown that the discrepancy between the expected and observed mode spacing is due to the effect of carrier-induced reduction of the refractive index under lasing conditions and this discrepancy decreases and naturally disappears as the threshold carrier density required for lasing decreases. Since the carrier-induced reduction of the refractive index is expected only from an electron-hole plasma state, our results naturally imply that electron-hole plasma recombination provides the optical gain in InGaN LDs, like in all other conventional III-V semiconductor lasers. The implications of our results on the design of nitride optoelectronic devices are also discussed. © 1999 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C50G</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C50M</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B40B60B</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7350G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7350M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>4260B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium nitrure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium nitrides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gallium nitrure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gallium nitrides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indice réfraction</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Refractive index</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Carrier density</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Gouttelette électron trou</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electron-hole droplets</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Recombinaison</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Recombination</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gain</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gain</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Plasma solide</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Solid-state plasma</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Mode laser</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Laser modes</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Recombinaison électron trou</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Electron-hole recombination</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Plasma semiconducteur</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Semiconductor plasma</s0>
</fC03>
<fN21>
<s1>053</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9907M000024</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 014311 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 014311 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:99-0099025
   |texte=   Mode spacing  anomaly  in InGaN blue lasers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024